Ischemic neurons in rat brains after 6, 8, or 10 minutes of transient hypoxic ischemia.

نویسندگان

  • A Radovsky
  • L Katz
  • U Ebmeyer
  • P Safar
چکیده

The incidence and distribution of ischemic (necrotic) neurons in the brains of rats 72 hr after hypoxic ischemia induced via asphyxiation is described and scored. Anesthetized Sprague-Dawley rats (10/group) were endotracheally intubated and had their airways occluded for 6, 8, or 10 min, which resulted, respectively, in approximately 3, 5, or 7 min of pulselessness (MABP < 10 mm Hg). Survival was 10/10, 9/10, and 6/10 in the 6-, 8-, and 10-min groups: deaths occurred within 1 hr after resuscitation. At 72 hr, rats were reanesthetized and their brains were perfusion-fixed with 3% buffered paraformaldehyde. Paraffin-embedded, 5-micron-thick, H&E-stained sections at 5 coronal levels of the brain had shrunken, hypereosinophilic ischemic neurons in 12 anatomic regions. Ischemic neurons were most consistently found in the lateral reticular thalamic nucleus; lateral caudoputamen; CA1 region of the hippocampus; subiculum; and, with longer asphyxia times, among cerebellar Purkinje neurons. Categorical histologic damage scores were assigned to affected regions on the basis of manual counts of ischemic neurons and summed for the whole brain. Brain histologic damage scores were significantly (p < 0.01) different for the 6-, 8-, and 10-min groups (means of 8 +/- 2; 14 +/- 4; and 22 +/- 4). Brain regions where both the number of rats affected and ranked categorical scores for ischemic neurons increased with asphyxia time were the lateral caudoputamen and cerebellar Purkinje neurons.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Quantitative evaluation of Blood Brain Barrier permeability in transient focal cerebral ischemia in the rat

Introduction: Development of brain edema following focal cerebral ischemia exacerbates primary ischemic injury. Blood brain barrier (BBB) opening is an important part of edema named as vasogenic brain edema. In this study, quantitative alterations of BBB permeability is experimentally evaluated using transient focal cerebral ischemia in the rat. Methods: Two groups of male rats (ischemic and sh...

متن کامل

Neurotrophic effect of hydroalcoholic extract of Malva neglecta leaf on pyramidal neurons of CA1 hippocampus of male Wistar rat following ischemia /reperfusion

Abstract Background: Stroke is the second leading cause of death in the world and has irreversible consequences. Cerebral ischemia/reperfusion (I/R) through production of oxidants and inflammatory markers causes apoptosis of brain neurons. On the other hand, in various studies, the antioxidant and anti-inflammatory effects of the Malva neglecta have been proven. Therefore, in this study, we inv...

متن کامل

Effect of Coenzyme Q10 (ubiquinone) on hippocampal CA1 pyramidal cells following transient global ischemia/reperfusion in male wistar rat

Ischemia/Reperfusion (I/R)-induced cerebral injury has been reported as a leading cause of deathand long-term disabilities. Hippocampus is an area which is more sensitive to be affected by I/Rand hypoxic conditions. Coenzyme Q10 is a strong antioxidant which plays a role in membranestabilization. This study aims to investigate the possible role of CoQ10 in ameliorating thehistomorphological cha...

متن کامل

L-NAME and 7-Nitroindazole Reduces Brain Injuries in Transient Focal Cerebral Ischemia in Rat

Background: The role of nitric oxide (NO) of endothelial or neuronal origins in cerebral ischemia and reperfusion injuries are far from being settled, extending from being important to not having any role at all.  Objective: To investigate the role of NO of endothelial and neuronal origins in ischemia/reperfusion injuries in focal cerebral ischemia, L-NAME, a non selective NO synthase inhibitor...

متن کامل

The Effect of Sodium Butyrate on Hippocampal Cell Damage and Apoptic Neurons Density in Cerebral Hypoxic-Ischemia Model

Introduction and aim: Histone deacetylase inhibitors (HDACi) have neuroprotective effects on amelioration of cerebral ischemic injuries. This study was investigated the effects of sodium butyrate (SB) as a HDACi hippocampal cell damage and neuronal/dark neuronal density in a rat cerebral hypoxic ischemia (HI) model. Materials and Methods: In this experimental study, 40 male Wistar rats (weight:...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Toxicologic pathology

دوره 25 5  شماره 

صفحات  -

تاریخ انتشار 1997